Determine whether a triangle can be built from a given set of edges
ℹ️ © Codility, 2009-2018
Problem
An array A consisting of n integers is given. A triplet (p, q, r) is “triangular” if 0 ≤ p < q < r < n and A[p] + A[q] > A[r], A[q] + A[r] > A[p], A[r] + A[p] > A[q].
For example, consider array A such that: A[0] = 10, A[1] = 2, A[2] = 5, A[3] = 1, A[4] = 8, A[5] = 20. Triplet (0, 2, 4) is triangular.
Write a function that, given an array A consisting of n integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that: A[0] = 10, A[1] = 2, A[2] = 5, A[3] = 1, A[4] = 8, A[5] = 20, the function should return 1, as explained above.
Given array A such that: A[0] = 10, A[1] = 50, A[2] = 5, A[3] = 1, the function should return 0.
Assume that:
• n is an integer within the range [0 … 100,000];
• each element of array A is an integer within the range [-2,147,483,648 … 2,147,483,647].
Complexity:
• expected worst-case time complexity is O(n · log(n));
• expected worst-case space complexity is O(n), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
Solution
C#
using System; class Solution { public int solution(int[] A) { int n = A.Length; if (n < 3) { return 0; } Array.Sort(A); for (int i = 0; i < n - 2; i++) { if ((long)A[i] + A[i + 1] > A[i + 2]) { return 1; } } return 0; } }
Java
import java.util.Arrays; class Solution { public int solution(int[] A) { int n = A.length; if (n < 3) { return 0; } Arrays.sort(A); for (int i = 0; i < n - 2; i++) { if ((long)A[i] + A[i + 1] > A[i + 2]) { return 1; } } return 0; } }
JavaScript
function solution(A) { let n = A.length; if (n < 3) { return 0; } A.sort((a, b) => a - b); for (let i = 0; i < n - 2; i++) { if (A[i] + A[i + 1] > A[i + 2]) { return 1; } } return 0; }
PHP
function solution($A) { $n = count($A); if ($n < 3) { return 0; } sort($A); for ($i = 0; $i < $n - 2; $i++) { if ($A[$i] + $A[$i + 1] > $A[$i + 2]) { return 1; } } return 0; }